Mechanical Anchors

Strong-Bolt® 2 Wedge Anchor

A wedge-type expansion anchor designed for optimal performance in cracked and uncracked concrete as well as uncracked masonry. The Strong-Bolt 2 is available in carbon steel, Type 304 and Type 316 stainless steel.

Features

- Code listed under IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-3037
- Code listed under IBC/IRC for masonry per IAPMO UES ER-240
- Qualified for static and seismic loading conditions (seismic design categories A through F)
- Suitable for horizontal, vertical and overhead applications
- Qualified for minimum concrete thickness of 31/4", and lightweight concrete-over-metal deck thickness of 21/2" and 31/4"
- Standard (ANSI) fractional sizes: fits standard fixtures and installs with common drill bit and tool sizes
- Tested per ACI355.2 and AC193

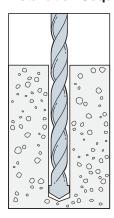
Code: ICC-ES ESR-3037 (concrete); IAPMO UES ER-240 (carbon steel in CMU); City of L.A. RR25891 (concrete), RR25936 (carbon steel in CMU); Florida FL-15731.2; FL-16230.4; UL File Ex3605; FM 3043342 and 3047639; Mulitiple DOT listings; meets the requirements of Federal Specifications A-A-1923A, Type 4

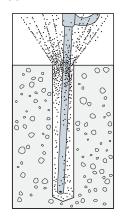
Installation

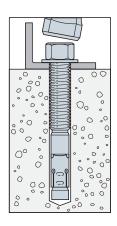
Do not use an impact wrench to set or tighten the Strong-Bolt 2 anchor.

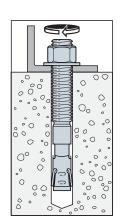
Caution: Oversized holes in the base material will make it difficult to set the anchor and will reduce the anchor's load capacity.

- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling.
- Assemble the anchor with nut and washer so the top of the nut is flush with the top of the anchor. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 3. Tighten to the required installation torque.






Head Stamp
The head is stamped with
the length identification
letter, bracketed top and
bottom by horizontal lines.


Strong-Bolt 2 Wedge Anchor

Installation Sequence

Strong-Bolt® 2 Wedge Anchor

Material Specifications

Anchor Body	Nut	Washer	Clip
Carbon Steel	Carbon Steel,	Carbon Steel	Carbon Steel,
	ASTM A 563, Grade A	ASTM F844	ASTM A 568
Type 304	Type 304	Type 304	Type 304 or 316
Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Type 316	Type 316	Type 316	Type 316
Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel

Strong-Bolt 2 Anchor Installation Data

Strong Bon Er mionion mot						
Strong-Bolt 2 Diameter (in.)	1/4	3∕8	1/2	5/8	3/4	1
Drill Bit Size (in.)	1/4	3/8	1/2	5/8	3/4	1
Min. Fixture Hole (in.)	5/16	7/16	9/16	11/ ₁₆	7/8	11/8
Wrench Size (in.)	7/16	9/16	3/4	¹⁵ / ₁₆	11/8	1½
Concrete Installation Torque (ftlbf.) Carbon Steel	4	30	65	80	150	230
Concrete Installation Torque (ftlbf.) Stainless Steel	4	30	60	80	150	_

Length Identification Head Marks on Strong-Bolt® 2 Wedge Anchors (corresponds to length of anchor – inches)

Mark	Units	A	В	С	D	Е	F	G	н	ı	J	K	L	M	N	0	Р	Q	R	S	T	U	v	w	Х	Υ	Z
From	in.	1½	2	2½	3	3½	4	4½	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18
Up To But Not Including	in.	2	2½	3	3½	4	41/2	5	5½	6	6½	7	7½	8	8½	9	9½	10	11	12	13	14	15	16	17	18	19

Strong-Bolt 2 Anchor Product Data

Size	Carbon Steel	Type 304	Type 316	Drill Bit	Thread	Qua	ntity
(in.)	Model No.	Stainless Steel Model No.	Stainless Steel Model No.	Diameter (in.)	Length (in.)	Box	Carton
1/4 x 13/4	STB2-25134	STB2-251344SS	STB2-251346SS	1/4	1 5/16	100	500
1/4 x 21/4	STB2-25214	STB2-252144SS	STB2-252146SS	1/4	1 7/16	100	500
1/4 x 31/4	STB2-25314	STB2-253144SS	STB2-253146SS	1/4	27/16	100	500
3/8 X 23/4	STB2-37234	STB2-372344SS	STB2-372346SS	3/8	15/16	50	250
3% x 3	STB2-37300	STB2-373004SS	STB2-373006SS	3/8	1 %16	50	250
3/8 X 31/2	STB2-37312	STB2-373124SS	STB2-373126SS	3/8	21/16	50	250
3/8 x 33/4	STB2-37334	STB2-373344SS	STB2-373346SS	3/8	25/16	50	250
% x 5	STB2-37500	STB2-375004SS	STB2-375006SS	3/8	39/16	50	200
3% x 7	STB2-37700	STB2-377004SS	STB2-377006SS	3/8	5%16	50	200
½ x 3¾	STB2-50334	STB2-503344SS	STB2-503346SS	1/2	21/16	25	125
½ x 4¼	STB2-50414	STB2-504144SS	STB2-504146SS	1/2	2%16	25	100
½ x 4¾	STB2-50434	STB2-504344SS	STB2-504346SS	1/2	31/16	25	100
½ x 5½	STB2-50512	STB2-505124SS	STB2-505126SS	1/2	3 13/16	25	100
½ x 7	STB2-50700	STB2-507004SS	STB2-507006SS	1/2	55/16	25	100
½ x 8½	STB2-50812	STB2-508124SS	STB2-508126SS	1/2	6	25	50
½ x 10	STB2-50100	STB2-501004SS	STB2-501006SS	1/2	6	25	50
5% x 4½	STB2-62412	STB2-624124SS	STB2-624126SS	5/8	27/16	20	80
5% x 5	STB2-62500	STB2-625004SS	STB2-625006SS	5/8	215/16	20	80
5% x 6	STB2-62600	STB2-626004SS	STB2-626006SS	5/8	315/16	20	80
5% x 7	STB2-62700	STB2-627004SS	STB2-627006SS	5/8	4 15/16	20	80
5% x 8½	STB2-62812	STB2-628124SS	STB2-628126SS	5/8	6	20	40
5% x 10	STB2-62100	STB2-621004SS	STB2-621006SS	5/8	6	10	20
3/4 x 51/2	STB2-75512	STB2-755124SS	STB2-755126SS	3/4	33/16	10	40
3/4 x 61/4	STB2-75614	STB2-756144SS	STB2-756146SS	3/4	315/16	10	40
3⁄4 x 7	STB2-75700	STB2-757004SS	STB2-757006SS	3/4	411/16	10	40
3⁄4 x 8½	STB2-75812	STB2-758124SS	STB2-758126SS	3/4	6	10	20
3⁄4 x 10	STB2-75100	_	_	3/4	6	10	20
1 x 7	STB2-100700	_	_	1	3½	5	20
1 x 10	STB2-1001000	_	_	1	3½	5	10
1 x 13	STB2-1001300	_	_	1	3½	5	10

Carbon-Steel Strong-Bolt 2 Installation Information¹

IBC		LW
	375000	

Chava abasis di	Complete	Heite				No	minal An	chor Dia	neter, d _a	(in.)				
Characteristic	Symbol	Units	1/44	3/	6 ⁵		1/25		5/	6 ⁵	3/	4 ⁵		1 ⁵
				Instal	llation Inf	ormation								
Nominal Diameter	da	in.	1/4	3,	⅓ 8		1/2		5	/8	3,	/4		1
Drill Bit Diameter	d	in.	1/4	3,	√8		1/2		5,	/8	3,	/4		1
Baseplate Clearance Hole Diameter ²	d_c	in.	5/16	7/	16		9/16		11,	/16	7,	/8	1	1/8
Installation Torque	T _{inst}	ft-lbf	4	3	30		60		g	10	15	50	2	30
Nominal Embedment Depth	h _{nom}	in.	13⁄4	17/8	27/8	2	3/4	37/8	3%	51/8	41/8	5¾	51/4	9¾
Effective Embedment Depth	h _{ef}	in.	1½	11/2	2½	2	1/4	3%	23/4	4½	3%	5	41/2	9
Minimum Hole Depth	h _{hole}	in.	17/8	2	3		3	41/8	35/8	5%	4%	6	5½	10
Minimum Overall Anchor Length	lanch	in.	21/4	23/4	31/2	3	3/4	5½	41/2	6	5½	7	7	13
Critical Edge Distance	Cac	in.	2½	6½	6	6½	6½	7½	7½	9	9	8	18	13½
	C _{min}	in.	13⁄4	(6	7 4		4	6	1/2	6	1/2		8
Minimum Edge Distance	for s ≥	in.	_	-	_	_	_	_	-	_	1	8	-	
	S _{min}	in.	21/4	;	3	7	4	4		5	-	7		8
Minimum Spacing	for c ≥	in.	_	-	_	_	_	_	-	_	1	8	-	_
Minimum Concrete Thickness	h _{min}	in	31/4	31/4	41/2	41/2	5½	6	5½	77/8	6¾	83⁄4	8	13½
	•			Α	dditional	Data							'	
Yield Strength	f _{ya}	psi	56,000	92,	000		85,000 70,000		000	60,	,000			
Tensile Strength	f _{uta}	psi	70,000			I	115,000				110	,000	78,	,000
Minimum Tensile and Shear Stress Area	A _{se}	in.²	0.0318	0.0	514		0.105		0.1	166	0.2	270	0.4	472
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	73,700³	34,	820		63,570		91,	370	118	,840	299),600

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

^{2.} The clearance must comply with applicable code requirements for the connected element.

^{3.} The tabulated value of β for 1/4"-diameter carbon steel Strong-Bolt 2 anchor is for installations in uncracked concrete only.

^{4.} The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

^{5.} The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

^{*} See p.13 for an explanation of the load table icons.

Stainless-Steel Strong-Bolt 2 Installation Information¹

Mechanical Anchors

Charactoristic	Cumbal	Unito			No	minal And	chor Dian	neter, d _a	(in.)			
Characteristic	Symbol	Units	1/44	3/	⁄8 ⁵		1/25		5/	i ⁵	3/	4 ⁵
			Installation In	nformatio	n							
Nominal Diameter	da	in.	1/4	3,	/8		1/2		5,	8	3,	/4
Drill Bit Diameter	d	in.	1/4	3,	/8		1/2		5,	8	3,	/4
Baseplate Clearance Hole Diameter ²	d_{c}	in.	5/16	7/	1 6		9/16		11,	1 6	7,	/8
Installation Torque	T _{inst}	ft-lbf	4	3	0		65		8	0	15	50
Nominal Embedment Depth	h _{nom}	in.	13/4	17/8	27/8	23/4	3	7/8	3%	51/8	41/8	5¾
Effective Embedment Depth	h _{ef}	in.	11/2	1½	2½	21/4	3	3/8	2¾	41/2	3%	5
Minimum Hole Depth	h _{hole}	in.	17/8	2	3	3	4	1/8	3%	5%	43/8	6
Minimum Overall Anchor Length	ℓ_{anch}	in.	21/4	23/4	3½	3¾	5	1/2	41/2	6	5½	7
Critical Edge Distance	Cac	in.	2½	6½ 8½		41/2	7		7½	9	8	8
	C _{min}	in.	13/4	(6	6½	5	4	2	1	(6
Minimum Edge Distance	for s ≥	in.	_	1	0	_	_	8	3	3	_	_
	S _{min}	in.	21/4	(3	8	5½ 4		61/4		6	1/2
Minimum Spacing	for c ≥	in.	_	1	0	_	_	8	5	1/2	_	_
Minimum Concrete Thickness	h _{min}	in.	31/4	31/4	41/2	41/2	(6	5½	77/8	6¾	8¾
			Additiona	ıl Data								
Yield Strength	f _{ya}	psi	96,000	80,	000		92,000		82,	000	68,	000
Tensile Strength	f _{uta}	psi	120,000	100	,000		115,000		108	000	95,	000
Minimum Tensile and Shear Stress Area	A _{se}	in. ²	0.0255	0.0	514		0.105		0.1	66	0.2	270
Axial Stiffness in Service Load Range — Cracked and Uncracked Concrete	β	lb./in.	54,430 ³	29,	150		54,900		61,	270	154	,290

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

^{2.} The clearance must comply with applicable code requirements for the connected element.

^{3.} The tabulated value of β for 1/4"-diameter stainless-steel Strong-Bolt 2 anchor is for installtions in uncracked concrete only.

^{4.} The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

^{5.} The %"- through %"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

^{*} See p. 13 for an explanation of the load table icons.

Carbon-Steel Strong-Bolt 2 Tension Strength Design Data¹

Oarbon-Steel Strong-Bolt 2 Ten			2 00.g.		I	Vominal	Anchor [Diamete	r, d _a (in.)				
Characteristic	Symbol	Units	1/48	3/	6 ⁹	1,		5,	6 9	3/	4 ⁹	1	9
Anchor Category	1, 2 or 3	_				1						2	2
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1 1/8	21/8	2¾	37/8	3%	51/8	41/8	5¾	51/4	9¾
		Steel	Strength in Tensio	n (ACI 3	18 Section	on D.5.1))						
Steel Strength in Tension	N _{sa}	lb.	2,225	5,6	600	12,	100	19,	070	29,	700	36,	815
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.7	' 5					0.	65
	Conc	rete Brea	akout Strength in ⁻	Tension	(ACI 318	Section	D.5.2)10						
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	23/4	4½	3%	5	4½	9
Critical Edge Distance	Cac	in.	21/2	6½	6	6½	7½	7½	9	9	8	18	13½
Effectiveness Factor — Uncracked Concrete	k _{uncr}	_					24	1					
Effectiveness Factor — Cracked Concrete	k _{cr}		7					1	7				
Modification Factor	$\psi_{c,N}$		7					1.	00				
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_				0.6	35					0.	55
		Pullout	Strength in Tensio	n (ACI 3	18 Secti	on D.5.3)10						
Pullout Strength, Cracked Concrete $(f'_{C} = 2,500 \text{ psi})$	N _{p,cr}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9855	N/A ⁴	8,5005	7,7005	11,1855
Pullout Strength, Uncracked Concrete $(f_C^* = 2,500 \text{ psi})$	N _{p,uncr}	lb.	N/A ⁴	N/A ⁴	3,3405	3,6155	5,2555	N/A ⁴	9,0255	7,1155	8,8705	8,3605	9,6905
Strength Reduction Factor — Pullout Failure ⁶	ϕ_p	_				0.6	65					0.	55
	Tensile	Strengt	h for Seismic App	lications	(ACI 31	8 Section	1 D.3.3.)¹	0					
Tension Strength of Single Anchor for Seismic Loads ($f_c = 2,500 \text{ psi}$)	N _{p.eq}	lb.	7	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,9855	N/A ⁴	8,5005	7,7005	11,185 ⁵
Strength Reduction Factor — Pullout Failure ⁶	ϕ_{eq}	_				0.6	35					0.	55

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- $4.\,\mbox{N/A}$ (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5.
- 6. The tabulated value of ϕ_D or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 7. The ¼"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 8. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 9. The %"- through %"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

^{*} See p. 13 for an explanation of the load table icons

Mechanical Anchors

Stainless-Steel Strong-Bolt 2 Tension Strength Design Data¹

Characteristic	Symbol	Units			Nomina	l Anchor	Diamete	r, d _a (in.)			
onal acteristic	Syllibol	Units	1/410	3/	/s ¹¹	1,	/2 ¹¹	5,	/8 ¹¹	3,	/ ₄ ¹¹
Anchor Category	1, 2 or 3	_					1				
Nominal Embedment Depth	h _{nom}	in.	13⁄4	1%	27/8	2¾	3%	3%	51/8	41/8	5¾
	Steel Stre	ngth in Te	nsion (ACI 318 Se	ection D.5	5.1)						
Steel Strength in Tension	N _{sa}	lb.	3,060	5,1	40	12,	075	17	930	25,	650
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	75				
Concre	te Breakou	t Strengt	h in Tension (ACI	318 Sect	ion D.5.2)12					
Effective Embedment Depth	h _{ef}	in.	1½	1 ½	21/2	21/4	3%	23/4	41/2	3%	5
Critical Edge Distance	Cac	in.	21/2	6½	81/2	41/2	7	7½	9	8	8
Effectiveness Factor — Uncracked Concrete	K _{uncr}					2	24				
Effectiveness Factor — Cracked Concrete	k _{cr}		9				1	7			
Modification Factor	$\psi_{c,N}$		9				1.	00			
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_				0.	65				
F	Pullout Stre	ngth in Te	ension (ACI 318 Se	ection D.	5.3) ¹²						
Pullout Strength, Cracked Concrete (f' _C = 2,500 psi)	N _{p,cr}	lb.	9	1,720 ⁶	3,145 ⁶	2,5605	4,3055	N/A ⁴	6,5457	N/A ⁴	8,2305
Pullout Strength, Uncracked Concrete (f' _C = 2,500 psi)	N _{p,uncr}	lb.	1,925 ⁷	N/A ⁴	4,7706	3,2305	4,4955	N/A ⁴	7,6155	7,7257	9,6257
Strength Reduction Factor — Pullout Failure ⁸	ϕ_p	_				0.	65				
Tensile S	Strength fo	r Seismic	nic Applications (ACI 318 Section D.3.3.)12								
Tension Strength of Single Anchor for Seismic Loads (f' $_{\it C}=2,500$ psi)	N _{p.eq}	lb.	9	1,7206	2,830 ⁶	2,5605	4,3055	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
Strength Reduction Factor — Pullout Failure ⁸	ϕ_{eq}	_				0.	65				

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below.
- The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. N/A (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5.
- 6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (ff c/2,500 psi)0.3.
- The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c/2,500 psi)^{0.4}.
- The tabulated value of ϕ_p or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACl 318-11 Section D.4.4(c).
- 9. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 10. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 11. The %"- through 34"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

IB

Carbon-Steel Strong-Bolt 2 Shear Strength Design Data¹

		0											
Characteristic	Cumbal	Units				Nomina	l Anchor	Diamete	r, d _a (in.)				
Gharacteristic	Symbol	UIIIIS	1/46	3,	⁄8 ⁷	1/	⁄2 ⁷	5,	⁄8 ⁷	3,	⁄4 ⁷	1	
Anchor Category	1, 2 or 3	_				-	1						2
Nominal Embedment Depth	h _{nom}	in.	13/4	17/8	27/8	23/4	37/8	3%	51/8	41/8	5¾	51/4	9¾
			Steel Strength in	Shear (A	ACI 318 S	ection D.	6.1)						
Steel Strength in Shear	V _{sa}	lb.	965	1,8	300	7,2	235	11,	035	14,	480	15,	020
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	65					0.	60
	-	Concre	ete Breakout Stre	ngth in SI	hear (ACI	318 Sec	tion D.6.2	2)8					
Outside Diameter	d _a	in.	0.25	0.3	375	0.5	500	0.6	625	0.7	750	1.	00
Load-Bearing Length of Anchor in Shear	ℓ_e	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000	4.500	8.000
Strength Reduction Factor — Concrete Breakout Failure ²	ϕ_{cb}	_					0.	70					
	-	Conc	rete Pryout Stren	gth in Sh	ear (ACI	318 Secti	ion D.6.3)						
Coefficient for Pryout Strength	K _{CP}	_	1.0		2.0	1.0				2.0			
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	23/4	4½	3%	5	4½	9
Strength Reduction Factor — Concrete Pryout Failure ⁴	ϕ_{cp}	_					0.	70				'	
	St	eel Stren	gth in Shear for Se	eismic Ap	plication	ıs(ACI 318	8 Section	D.3.3.)					
Shear Strength of Single Anchor for Seismic Loads (${\rm f'}_{\rm C}=2{,}500$ psi)	V _{sa.eq}	lb.	5	1,8	300	6,5	510	9,9	930	11,	775	15,	020
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	65					0.	60

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of φ_{CD} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of φ_{CD} must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 5. The 1/4"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 7. The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

Stainless-Steel Strong-Bolt 2 Shear Strength Design Data¹

1	IBC	
	IBC	

0.65

Stairliess-Steel Strong-Bolt 2 Shear Strei	igti i Boo	ngi i ba	ta		Nomino	Anchor	Diamoto	rd (in)						
Characteristic	Symbol	Units												
			1/46	3/	8 ⁷	1/:	27	5/	B ⁷	3/.	4 ⁷			
Anchor Category	1, 2 or 3	_				-								
Nominal Embedment Depth	h _{nom}	in.	13⁄4	17/8	21//8	23/4	3%	3%	51/8	41/8	5¾			
	Steel Stre	ngth in S	hear (ACI 318 Sec	ction D.6.	1)									
Steel Strength in Shear	V _{sa}	lb.	1,605	3,0)85	7,2	45	6,745	10,760	15,	045			
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_				0.	65							
Concr	ete Breako	ut Streng	th in Shear (ACI 3	18 Section	on D.6.2)	В								
Outside Diameter	d _a	in.	0.250	0.3	375	0.5	000	0.6	625	0.7	'50			
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.500	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000			
Strength Reduction Factor — Concrete Breakout Failure ³	фсь					0.	70							
Cond	crete Pryou	t Strengt	n in Shear (ACI 31	8 Section	n D.6.3)									
Coefficient for Pryout Strength	k _{cp}	_	1.0		2.0	1.0			2.0					
Effective Embedment Depth	h _{ef}	in.	1½	1½	2½	21/4	3%	23/4	41/2	3%	5			
Strength Reduction Factor — Concrete Pryout Failure ⁴	фср	_				0.	70							
Steel Streng	gth in Shea	r for Seis	mic Applications	(ACI 318	Section	D.3.3.)								
Shear Strength of Single Anchor for Seismic Loads (f' $_{\it C}=$ 2,500 psi)	V _{sa.eq}	lb.	5	3,0)85	6,1	00	6,745	10,760	13,	620			

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

 ϕ_{sa}

- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of φ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of ϕ_{CP} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{CP} must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 5. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 7. The %"- through %"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

Strength Reduction Factor — Steel Failure²

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

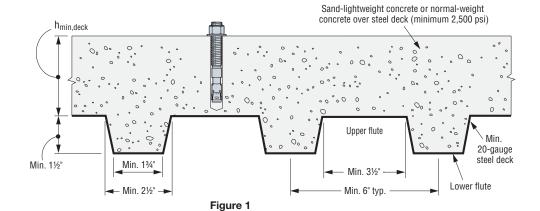
^{*} See p. 13 for an explanation of the load table icons.

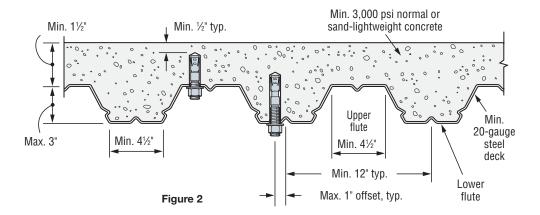
Carbon-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

Design Information	Cumbal	Units	Nominal	Anchor Diam	eter (in.)
Design information	Symbol	UIIILS	3/8		1/2
Nominal Embedment Depth	h _{nom}	in.	1	7/8	23/4
Effective Embedment Depth	h _{ef}	in.	1½		21/4
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21/2	31/4	31/4
Critical Edge Distance	C _{ac,deck,top}	in.	43/4	4	4
Minimum Edge Distance	C _{min,deck,top}	in.	43/4	41/2	43/4
Minimum Spacing	S _{min,deck,top}	in.	7	61/2	8

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on p. 136 and Figure 1 below.
- Design capacity shall be based on calculations according to values in the tables on pp. 138 and 140.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is $1\frac{1}{2}$ ".
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness (*h_{min,deck}*) refers to concrete thickness above upper flute.


Stainless-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}



Decign Information	Cumbal	Units	Nominal	Anchor Diam	eter (in.)
Design Information	Symbol	UIIILS	JIIIS 3/8		1/2
Nominal Embedment Depth	h _{nom}	in.	1	7/8	23/4
Effective Embedment Depth	h _{ef}	in.	1½		21/4
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21/2	31/4	31/4
Critical Edge Distance	C _{ac,deck,top}	in.	43/4	4	4
Minimum Edge Distance	C _{min,deck,top}	in.	43/4		6
Minimum Spacing	S _{min,deck,top}	in.	6	1/2	8

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on p. 137 and Figure 1 below.
- 2. Design capacity shall be based on calculations according to values in the tables on pp. 139 and 141.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 1½".
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness (*h_{min,deck}*) refers to concrete thickness above upper flute.

* See p. 13 for an explanation of the load table icons

SIMPSON
Strong-Tie

Carbon-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,8,9}

						Nominal A	nchor Dia	meter (in.))		
Characteristic	Symbol	Units				C	arbon Ste	el			
Gildideteristic	Syllibul	UIIILS			L	ower Flut	е			Uppei	^r Flute
			3,	/8	1	/2	5,	%	3/4	3/8	1/2
Nominal Embedment Depth	h _{nom}	in.	2	3%	23/4	41/2	3%	5%	41/8	2	2¾
Effective Embedment Depth	h _{ef}	in.	1 5/8	3	21/4	4	23/4	5	3%	15/8	21/4
Installation Torque	T _{inst}	ftlbf.	3	10	6	0	9	0	150	30	60
Pullout Strength, concrete on metal deck (cracked)3,4	N _{p,deck,cr}	lb.	1,040 ⁷	2,615 ⁷	2,0407	2,730 ⁷	2,615 ⁷	4,990 ⁷	2,815 ⁷	1,340 ⁷	3,785 ⁷
Pullout Strength, concrete on metal deck (uncracked)3,4	N _{p,deck,uncr}	lb.	1,765 ⁷	3,150 ⁷	2,580 ⁷	3,840 ⁷	3,685 ⁷	6,565 ⁷	3,8007	2,275 ⁷	4,795 ⁷
Pullout Strength, concrete on metal deck (seismic) ^{3,4}	N _{p,deck,eq}	lb.	1,0407	2,615 ⁷	2,0407	2,730 ⁷	2,615 ⁷	4,990 ⁷	2,815 ⁷	1,340 ⁷	3,785 ⁷
Steel Strength in Shear, concrete on metal deck ⁵	V _{sa,deck}	lb.	1,595	3,490	2,135	4,580	2,640	7,000	4,535	3,545	5,920
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	1,595	3,490	1,920	4,120	2,375	6,300	3,690	3,545	5,330

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies $N_{\mathcal{D},deck_{1}C}$ shall be substituted for $N_{\mathcal{D},C}$. Where analysis indicates no cracking at service loads, the normal pullout strength in

- uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for N_p .
- 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{Sa}, deck shall be substituted for V_{Sa}. For seismic loads, V_{Sa}, deck, eq shall be substituted for V_{Sa}.
- 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{\it ef}$ or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by ($^{\rm t}_{\rm c}/$ 3,000 psi) $^{\rm 0.5}$.
- Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_C of 3,000 psi.
- 9. Minimum distance to edge of panel is 2h_{ef}.

Stainless-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,10,11}

Mechanical Anchors

						St	ainless Ste	eel			
Characteristic	Symbol	Units			L	ower Flut	e			Upper	Flute
			3,	%	1	/2	5,	%	3/4	3/8	1/2
Nominal Embedment Depth	h _{nom}	in.	2	3%	23/4	41/2	3%	5%	41/8	2	23/4
Effective Embedment Depth	h _{ef}	in.	1%	3	21/4	4	23/4	5	3%	1 5/8	21/4
Installation Torque	T _{inst}	ftlbf.	3	0	6	5	8	0	150	30	65
Pullout Strength, concrete on metal deck (cracked) ³	N _{p,deck,cr}	lb.	1,2308	2,6058	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,0209	3,0307	1,5508	2,055 ⁷
Pullout Strength, concrete on metal deck (uncracked) ³	N _{p,deck,uncr}	lb.	1,5808	3,9508	2,475 ⁷	2,660 ⁷	2,470 ⁷	5,000 ⁷	4,2759	1,9908	2,560 ⁷
Pullout Strength, concrete on metal deck (seismic) ⁵	N _{p,deck,eq}	lb.	1,2308	2,3458	1,990 ⁷	2,550 ⁷	1,750 ⁹	4,0209	3,0307	1,5508	2,055 ⁷
Steel Strength in Shear, concrete on metal deck4	V _{sa,deck}	lb.	2,285	3,085	3,430	4,680	3,235	5,430	6,135	3,085	5,955
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	2,285	3,085	2,400	3,275	3,235	5,430	5,520	3,085	4,170

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N_{D,deck,cr} shall be substituted for N_{D,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{D,deck,uncr} shall be substituted for N_{D,uncr}. For seismic loads, N_{D,deck,eq} shall be substituted for N_D.
- 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa}, deck,eg shall be substituted for V_{sa}.
- The minimum anchor spacing along the flute must be the greater of 3.0hef or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_C^*/3,000 \text{ psi})^{0.5}$.
- 8. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_c^*/3,000~\mathrm{psi})^{0.3}$.
- 9. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f' $_{\rm C}$ / 3,000 psi) $^{0.4}$.
- Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.
- 11. Minimum distance to edge of panel is 2hef.

^{*} See p. 13 for an explanation of the load table icons.

Carbon-Steel Strong-Bolt 2 Anchor Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck, Floor and Roof Assemblies^{1,2,6,8,9}

				Carbon St	eel Nominal	Anchor Dia	meter (in.)		
Characteristic	Symbol	Units	Installed in Lower Flute						
			3,	/8	1	/2	5,	/8	
Nominal Embedment Depth	h _{nom}	in.	2	3%	23/4	41/2	3%	5%	
Effective Embedment Depth	h _{ef}	in.	1%	3	21/4	4	2¾	5	
Minimum Hole Depth	h _{hole}	in.	21/8	3½	3	43/4	3%	5%	
Minimum Concrete Thickness	h _{min,deck}	in.	2	2	2	31/4	2	31/4	
Installation Torque	T _{inst}	ftlbf.	3	60	6	0	9	0	
Pullout Strength, concrete on metal deck (cracked)3,4,7	N _{p,deck,cr}	lb.	1,295	2,705	2,585	4,385	3,015	5,120	
Pullout Strength, concrete on metal deck (uncracked) ^{3,4,7}	N _{p,deck,uncr}	lb.	2,195	3,260	3,270	6,165	4,250	6,735	
Pullout Strength, concrete on metal deck (seismic) ^{3,4,7}	N _{p,deck,eq}	lb.	1,295	2,705	2,585	4,385	3,015	5,120	
Steel Strength in Shear, concrete on metal deck ⁵	V _{sa,deck}	lb.	1,535	3,420	2,785	5,950	3,395	6,745	
Steel Strength in Shear, concrete on metal deck (seismic) ⁵	V _{sa,deck,eq}	lb.	1,535	3,420	2,505	5,350	3,055	6,070	

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 3 below, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 50 with minimum yield strength of 50,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies $N_{p,deck,cr}$ shall be substituted for $N_{p,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$. For seismic loads, $N_{p,deck,eq}$ shall be substituted for N_p .
- 5. In accordance with ACI 318-14 Section 17.5.1.2(c) or ACI 318-11, the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa}, deck shall be substituted for V_{sa}. For seismic loads, V_{sa,deck,eq} shall be substituted for V_{sa}.
- 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{ef}$ or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f_c^i/3,000 \text{ ps})^{0.5}$.
- 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.
- 9. Minimum distance to edge of panel is $2h_{ef}$

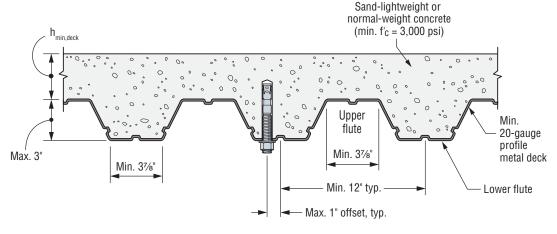


Figure 3

^{*} See p. 13 for an explanation of the load table icons

Strong-Bolt® 2 Design Information — Masonry

Mechanical Anchors

Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

IBC		→	7
-----	--	----------	---

Size	Drill Bit	Min. Embed.	Install. Torque	Critical	Critical	Critical	Tension Load Shear Load		Load	
in. (mm)	Dia. (in.)	Depth in. (mm)	ftlb. (N-m)	Edge Dist. in. (mm)	End Dist. in. (mm)	Spacing in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
			Anchor	Installed in the	Face of the C	/IU Wall (See Fi	gure 1)			
1/4 (6.4)	1/4	13/4 (45)	4 (5.4)	12 (305)	12 (305)	8 (203)	1,150 (5.1)	230 (1.0)	1,500 (6.7)	300 (1.3)
3/8 (9.5)	3/8	25% (67)	20 (27.1)	12 (305)	12 (305)	8 (203)	2,185 (9.7)	435 (1.9)	3,875 (17.2)	775 (3.4)
½ (12.7)	1/2	3½ (89)	35 (47.5)	12 (305)	12 (305)	8 (203)	2,645 (11.8)	530 (2.4)	5,055 (22.5)	1,010 (4.5)
5% (15.9)	5/8	4 % (111)	55 (74.6)	20 (508)	20 (508)	8 (203)	4,460 (19.8)	890 (4.0)	8,815 (39.2)	1,765 (7.9)
3/4 (19.1)	3/4	51⁄4 (133)	100 (135.6)	20 (508)	20 (508)	8 (203)	5,240 (23.3)	1,050 (4.7)	12,450 (55.4)	2,490 (11.1)

- The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Listed loads may be applied to installations on the face of the CMU wall at least $1\,^{1}\!4$ " away from headjoints.
- 3. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, \mathbf{f}'_m , at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit.
- 5. Tension and shear loads may be combined using the parabolic interaction equation (n = $\frac{4}{3}$).
- Refer to allowable load adjustment factors for edge distance and spacing on p. 146.
- Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code.

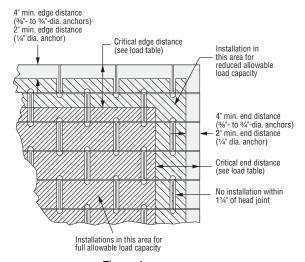


Figure 1

Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-weight and Normal-Weight Grout-Filled CMU

Size	Size Drill Bit Embed. Torque Edge. Dist. End Dist. Spacin in. Comp. in. in. in. in. in.	Critical Spacing	Tension Load		Shear Load Perp. To Edge		Shear Load Parallel To Edge					
(mm)	in.	in. (mm)	ftİb. (N-m)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 2)							2)					
½ (12.7)	1/2	3½ (89)	35 (47.5)	13/4 (45)	12 (305)	8 (203)	2,080 (9.3)	415 (1.8)	1,165 (5.2)	235 (1.0)	3,360 (14.9)	670 (3.0)
5% (15.9)	5/8	4 3/8 (111)	55 (74.6)	13/4 (45)	12 (305)	8 (203)	3,200 (14.2)	640 (2.8)	1,370 (6.1)	275 (1.2)	3,845 (17.1)	770 (3.4)

- The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m , at 28 days is 1,500 psi.
- 3. Tension and shear loads may be combined using the parabolic interaction equation (n = %).
- Refer to allowable load adjustment factors for edge distance and spacing on p. 146.
- 5. Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code.

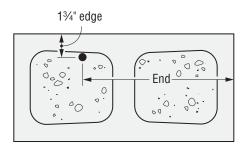


Figure 2

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

Strong-Bolt® 2 Design Information — Masonry

Carbon-Steel Strong-Bolt 2 Allowable Load Adjustment Factors for Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

IBC

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.

Edge or End Distance Tension (f_a)

	Dia.	1/4	3/8	1/2	5/8	3/4
	Ε	13/4	2%	31/2	4%	51/4
c _{act} (in.)	C _{cr}	12	12	12	20	20
(111.)	C _{min}	2	4	4	4	4
	f _{cmin}	1.00	1.00	1.00	1.00	0.97
2		1.00				
4		1.00	1.00	1.00	1.00	0.97
6		1.00	1.00	1.00	1.00	0.97
8		1.00	1.00	1.00	1.00	0.98
10		1.00	1.00	1.00	1.00	0.98
12		1.00	1.00	1.00	1.00	0.99
14					1.00	0.99
16					1.00	0.99
18					1.00	1.00
20					1.00	1.00

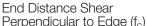
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge or End Distance Shear (f_c)

Lage	J. L. 10		.00 011	00 ()			
	Dia.	1/4	3/8	1/2	5/8	3/4	IBC
	Ε	13/4	25/8	31/2	43/8	51/4	
c _{act} (in.)	C _{cr}	12	12	12	20	20	→
(111.)	C _{min}	2	4	4	4	4	87 B.
	f _{cmin}	0.88	0.71	0.60	0.36	0.28	(22)2
2		0.88					
4		0.90	0.71	0.60	0.36	0.28	
6		0.93	0.78	0.70	0.44	0.37	/ J
8		0.95	0.86	0.80	0.52	0.46	(Signalization)
10		0.98	0.93	0.90	0.60	0.55	
12		1.00	1.00	1.00	0.68	0.64	
14					0.76	0.73	
16					0.84	0.82	
18					0.92	0.91	
20					1.00	1.00	

- 1	0	().	<i>'</i>			
	Dia.	1/4	3/8	1/2	5/8	3/4
	Ε	13/4	25/8	31/2	4%	51/4
Sact	Scr	8	8	8	8	8
(in.)	Smin	4	4	4	4	4
	f _{smin}	1.00	1.00	0.93	0.86	0.80
4		1.00	1.00	0.93	0.86	0.80
6		1.00	1.00	0.97	0.93	0.90
8		1.00	1.00	1.00	1.00	1.00

Spacing Shear (f_s)


	Dia.	1/4	3/8	1/2	5/8	3/4
	Ε	13/4	25/8	31/2	43/8	51/4
Sact	Scr	8	8	8	8	8
(in.)	Smin	4	4	4	4	4
	f _{smin}	1.00	1.00	1.00	1.00	1.00
4		1.00	1.00	1.00	1.00	1.00
6		1.00	1.00	1.00	1.00	1.00
8		1.00	1.00	1.00	1.00	1.00

Load Adjustment Factors for Carbon-Steel Strong-Bolt 2 Wedge Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

End Distance

rensio	n (ī _c)			
	Dia.	1/2	5/8	IBC
	Ε	31/2	4%	
s _{act} (in.)	C _{cr}	12	12	1
(111.)	C _{min}	4	4	8V 88
	f _{cmin}	1.00	1.00	(T T T T T T T T T T T T T T T T T T T
4		1.00	1.00	
6		1.00	1.00	
8		1.00	1.00	
10		1.00	1.00	_
12		1.00	1.00	

orportatodiai to Eago (ic)					
	Dia.	1/2	5/8		
	Ε	31/2	4%		
c _{act} (in.)	Ccr	12	12		
(111.)	C _{min}	4	4		
	f _{cmin}	0.90	0.83		
4		0.90	0.83		
6		0.93	0.87		
8		0.95	0.92		
10		0.98	0.96		
12		1.00	1.00		

End Distance

Shear Parallel to Edge (f.)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shear	Paralle		ige (i _c)	
$\begin{array}{c cccc} c_{\text{act}} & c_{cr} & 12 & 12 \\ \hline c_{min} & 4 & 4 \\ \hline \end{array}$		Dia.	1/2	5/8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	Ε	31/2	4%	Ľ
<i>c_{min}</i> 4 4	C _{act}	C _{cr}	12	12	
f _{cmin} 0.53 0.50 4 0.53 0.50	(111.)	C _{min}	4	4	27
4 0.53 0.50		f _{cmin}	0.53	0.50	١
	4		0.53	0.50	
6 0.65 0.63	6		0.65	0.63	
8 0.77 0.75	8		0.77	0.75	l.
10 0.88 0.88	10		0.88	0.88	
12 1.00 1.00	12		1.00	1.00	

Spacir	Spacing Tension (f _s)			
	Dia.	1/2	5/8	IBC
	Ε	31/2	4%	
s _{act} (in.)	s _{cr}	8	8	
(111.)	Smin	4	4	
	f _{cmin}	0.93	0.86	(22)
4		0.93	0.86	
6		0.97	0.93	n n
8		1.00	1.00	Ĭ 4 → N

Spacing Shear Perpendicular or Parallel to Edge (f_s)

31 1 dirainor to _a.go (.s)					
	Dia.	1/2	5/8		
s _{act} (in.)	Ε	31/2	43/8		
	s _{cr}	8	8		
(111.)	Smin	4	4		
	f _{cmin}	1.00	1.00		
4		1.00	1.00		
6		1.00	1.00		
8		1.00	1.00		

IBC

* See p. 13 for an explanation of the load table icons.