Drop-In Short / Drop-In Stainless Steel Internally Threaded Anchor (DIA)

Drop-in anchors are internally threaded drop-in expansion anchors for use in flush-mount applications in solid base materials. Available in stainless steel (DIA) or short (DIAS) version. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

Features

- Lipped edge (DIAS) eliminates need for precisely drilled hole depth
- Hand- and power-setting tools available for fast, easy and economical installation
- · Fixed-depth stop bit helps you drill to the correct depth every time
- Short length (DIAS) enables shallow embedment to help avoid drilling into rebar or pre-stressed/post-tensioned cables
- Short drop-in anchors include a setting tool compatible with the anchor to ensure consistent installation

Material: Stainless steel and carbon steel

Coating: Carbon steel; zinc plated

Codes: DOT; Factory Mutual 3017082; Underwriters Laboratories File Ex3605. Meets requirements of Federal Specifications A-A-55614, Type I.

Caution: The load tables list values based upon results from the most recent testing and may not reflect those in current code reports. Where code jurisdictions apply, consult the current reports for applicable load values.

Installation

- 1. Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus 1/4" for flush mounting. Blow the hole clean using compressed air. Overhead installations need not be blown clean.
- 2. Insert designated anchor into hole. Tap with hammer until flush against surface.
- 3. Using the designated drop-in setting tool, drive expander plug toward the bottom of the anchor until shoulder of setting tool makes contact with the top of the anchor.
- 4. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.
- Caution: Oversized holes will make it difficult to set the anchor and will reduce the anchor's load capacity.

Installation Sequence

Drop-In Anchor Product Data — Stainless Steel

Rod Size	Type 303/304	Type 316	Drill Bit	Bolt	Body	Thread	Qua	ntity
(in.)	Model No.	Model No.	(in.)	(per in.)	(in.)	(in.)	Box	Carton
1⁄4	DIA25SS	DIA256SS	3⁄8	20	1	3⁄8	100	500
3⁄8	DIA37SS	DIA376SS	1/2	16	1 %16	5⁄8	50	250
1⁄2	DIA50SS	DIA506SS	5⁄8	13	2	3⁄4	50	200
5⁄8	DIA62SS	—	7⁄8	11	21⁄2	1	25	100
3⁄4	DIA75SS	—	1	10	31⁄8	11⁄4	20	80

Drop-In Stainless Steel

Strong

Short Drop-In

Mechanical Anchors

Drop-In Short / Drop-In Stainless Steel Internally Threaded Anchor (DIA)

Short Drop-In Anchor Product Data

Rod	Model	Drill Bit	Bolt	Body	Thread	Qua	ntity	
(in.)	No.	(in.)	(per in.)	(in.)	(in.)	Box	Carton	
3⁄8	DIA37S ¹	1⁄2	16	3⁄4	1⁄4	100	500	
1/2	DIA50S ¹	5⁄8	13	1	5⁄16	50	200	

1. A dedicated setting tool is included with each box of DIA37S and DIA50S.

Material Specifications

Anchor	Component Material							
Component	Zinc Plated Carbon Steel	Type 303/304 Stainless Steel	Type 316 Stainless Steel					
Anchor Body	Meets minimum 70,000 psi tensile	AISI 303. Meets chemical requirements of ASTM A582	Type 316					
Expander Plug	Meets minimum 50,000 psi tensile	AISI 303	Type 316					
Thread	UNC/Coil-thread	UNC	UNC					

Allowable Tension Loads for Drop-In (Stainless Steel) Anchor in Normal-Weight Concrete

		<u> </u>				-	-	Tension Load			
Rod Size in.	Drill Bit Dia.	Embed. Depth in.	Critical Edge Dist.	Critical Spacing in.	f (13.	' _c ≥ 2,000 p 8 MPa) Cond	si crete	$f'_c \ge 3,000 \text{ psi}$ (20.7 MPa) Concrete	f' (27.6	_c ≥ 4,000 ps 5 MPa) Cono	si crete
(mm)	(in.)	(mm)	in. (mm)	(mm)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allowable lb. (kN)	Allowable Ib. (kN)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allowable lb. (kN)
1⁄4 (6.4)	3⁄8	1 (25)	3 (76)	4 (102)	1,400 (6.2)	201 (0.9)	350 (1.6)	405 (1.8)	1,840 (8.2)	451 (2.0)	460 (2.0)
3⁄8 (9.5)	1⁄2	1%16 (40)	4½ (114)	6 (152)	2,400 (10.7)	251 (1.1)	600 (2.7)	795 (3.5)	3,960 (17.6)	367 (1.6)	990 (4.4)
1⁄2 (12.7)	5⁄8	2 (51)	6 (152)	8 (203)	3,320 (14.8)	372 (1.7)	830 (3.7)	1,178 (5.2)	6,100 (27.1)	422 (1.9)	1,525 (6.8)
⁵⁄8 (15.9)	7⁄8	2½ (64)	7½ (191)	10 (254)	5,040 (22.4)	689 (3.1)	1,260 (5.6)	1,715 (7.6)	8,680 (38.6)	971 (4.3)	2,170 (9.7)
3⁄4 (19.1)	1	3½ (79)	9 (229)	12½ (318)	8,160 (36.3)	961 (4.3)	2,040 (9.1)	2,365 (10.5)	10,760 (47.9)	1,696 (7.5)	2,690 (12.0)

See foonotes below.

Allowable Shear Loads for Drop-In (Stainless Steel) Anchor in Normal-Weight Concrete

		igne oor	101010						
Dod	D-ill	Embod	Critical	Oritical			5	near Load	
Size in.	Bit Dia.	Depth in.	Edge Dist.	Spacing in.	(13	f' _c ≥ 2,000 psi .8 MPa) Concr	ete	f' _c ≥ 3,000 psi (20.7 MPa) Concrete	f' _c ≥ 4,000 psi (27.6 MPa) Concrete
(mm)	in.	(mm)	(mm)	(mm)	Ultimate Ib. (kN)	Std. Dev. Ib. (kN)	Allowable Ib. (kN)	Allowable Ib. (kN)	Allowable Ib. (kN)
1⁄4 (6.4)	3⁄8	1 (25)	3½ (89)	4 (102)	1,960 (8.7)	178 (0.8)	490 (2.2)	490 (2.2)	490 (2.2)
3⁄8 (9.5)	1⁄2	1%16 (40)	5¼ (133)	6 (152)	3,240 (14.4)	351 (1.6)	810 (3.6)	925 (4.1)	1,040 (4.6)
1⁄₂ (12.7)	5⁄8	2 (51)	7 (178)	8 (203)	7,000 (31.1)	562 (2.5)	1,750 (7.8)	1,750 (7.8)	1,750 (7.8)
5⁄8 (15.9)	7⁄8	2½ (64)	8¾ (222)	10 (254)	11,080 (49.3)	923 (4.1)	2,770 (12.3)	2,770 (12.3)	2,770 (12.3)
3⁄4 (19.1)	1	3½ (79)	10½ (267)	12½ (318)	13,800 (61.4)	1,781 (7.9)	3,450 (15.3)	3,725 (16.6)	4,000 (17.8)

1. The allowable loads listed are based on a safety factor of 4.0.

2. Refer to allowable load-adjustment factors for edge distance and spacing on p. 190.

3. Allowable loads may be linearly interpolated between concrete strengths listed.

4. The minimum concrete thickness is 11/2 times the embedment depth.

* See p. 13 for an explanation of the load table icons.

Drop-In (DIA) Design Information — Concrete

Allowable Tension and Shear Loads for 3%" and 1/2" Short Drop-In Anchor in Sand-Lightweight Concrete Fill over Metal Deck

	Rod	Drill	Emh	Tension Critical	Shear Critical	ar Install throug cal Critical —		hear Install through the Lower Flute or Upper Flute of Metal Deck, ritical Critical f'c ≥ 3,000 psi Concrete (20.7 MPa)				
Model No.	Size	Bit Dia.	Depth	End	End	Spacing	Tensio	n Load	Shear	Load		
	(in.)	(in.)	(in.)	Distance (in.)	Distance (in.)	(in.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)		
DIA37S	3⁄8	1/2	3⁄4	6	7	8	1,344	335	1,649	410		
DIA50S	1/2	5⁄8	1	8	93⁄8	10%	1,711	430	2,070	515		

1. The allowable loads listed are based on a safety factor of 4.0.

2. Allowable loads may not be increased for

centerline of the flute.

- Allowable loads may not be increased for short-term loading due to wind or seismic forces.
 Befer to allowable load-adjustment factors for
- Refer to allowable load-adjustment factors for edge distances and spacing on p. 190.
 Anchors were installed with a 1" offset from the
- 00 *ه* ۵ 61⁄4" 0 0, 0 0 Min. 3 Upper 20-gauge flute steel deck Min. 41/2' Drop-In anchor 1" offset — see footnote #4 on bottom table 41/2 7½"

Lightweight Concrete over Metal Deck

Allowable Tension and Shear Loads for 3%" and 1/2" Short Drop-In Anchor in Normal-Weight Concrete

		Drill	Tension Shear			Normal	-Weight Cor	icrete, f' _c ≥	2500 psi	Normal	-Weight Con	crete, f' _c ≥	4,000 psi	
Model	Rod Size	Bit	Emb. Depth	Critical Edge	Critical Edge	Critical Spacing	Tensio	on Load	Shea	r Load	Tensio	on Load	Shea	r Load
NO.	(in.)	lin.)	(in.)	Distance (in.)	Distance (in.)	(in.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)	Ultimate (lb.)	Allowable (lb.)
DIA37S	3⁄8	1⁄2	3⁄4	41⁄2	51⁄4	3	1,500	375	2,274	570	2,170	540	3,482	870
DIA50S	1/2	5⁄8	1	6	7	4	2,039	510	3,224	805	3,420	855	5,173	1,295

1. The allowable loads listed are based on a safety factor of 4.0.

2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 190.

4. Allowable loads may be linearly interpolated between concrete strengths.

Allowable Tension and Shear Loads for 3%" and 1/2" Short Drop-In Anchor in Hollow-Core Concrete Panel

1. The allowable loads listed are based on a safety factor of 4.0.

2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 190.

4. Allowable loads may be linearly interpolated between concrete strengths.

IBC

SIMPSO

Sirong

Drop-In (DIA) Design Information — Concrete

Allowable Load-Adjustment Factors for Drop-In (Stainless Steel) and Short Drop-In Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

Edge Distance Tension (f_c)

Edge	Size	1⁄4	3⁄8	1/2	5⁄8	3⁄4
Dist.	C _{cr}	3	41/2	6	71/2	9
Cact	C _{min}	1¾	2%	31⁄2	43%	51⁄4
(ın.)	f _{cmin}	0.65	0.65	0.65	0.65	0.65
13⁄4		0.65				
2		0.72				
21/2		0.86				
25⁄8		0.90	0.65			
3		1.00	0.72			
31⁄2			0.81	0.65		
4			0.91	0.72		
43⁄8			0.98	0.77	0.65	
41⁄2			1.00	0.79	0.66	
5				0.86	0.72	
51⁄4				0.90	0.75	0.65
51⁄2				0.93	0.78	0.67
6				1.00	0.83	0.72
61⁄2					0.89	0.77
7					0.94	0.81
71/2					1.00	0.86
8						0.91
81/2						0.95
9						1.00

See notes below.

Mechanical Anchors

Edge Distance Shear (f_c)

Edge	Size	1⁄4	3⁄8	1⁄2	5⁄8	3⁄4
Dist.	Ccr	31⁄2	51⁄4	7	8¾	10½
Cact	Cmin	13⁄4	2%	31⁄2	4%	51⁄4
(in.)	f _{cmin}	0.45	0.45	0.45	0.45	0.45
13⁄4		0.45				
2		0.53				
21⁄2		0.69				
25⁄8		0.73	0.45			
3		0.84	0.53			
31/2		1.00	0.63	0.45		
4			0.74	0.53		
43⁄8			0.82	0.59	0.45	
41/2			0.84	0.61	0.47	
5			0.95	0.69	0.53	
51⁄4			1.00	0.73	0.56	0.45
51⁄2				0.76	0.59	0.48
6				0.84	0.65	0.53
61⁄2				0.92	0.72	0.58
7				1.00	0.78	0.63
71⁄2					0.84	0.69
8					0.91	0.74
81⁄2					0.97	0.79
8¾					1.00	0.82
9						0.84
91/2						0.90
10						0.95
101/2						1.00

1. cact = actual edge distance at which anchor is installed (inches).

2. c_{cr} = critical edge distance for 100% load (inches).

3. cmin = minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.

7. $f_c = f_{cmin} + [(1 - f_{cmin}) (C_{act} - C_{min}) / (C_{cr} - C_{min})].$

* See p. 13 for an explanation of the load table icons.

- 4. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

Spaci	ng Tei	nsion a	and Sh	near (f _s))		
	Size	1⁄4	3/8 9	3⁄8	1/2 ¹⁰	1⁄2	ŧ
	Ε	1	3⁄4	1½	1	2	2
S _{act}	S _{cr}	4	3	6	4	8	1
()	S _{min}	2	1½	3	2	4	
	f _{smin}	0.50	0.50	0.50	0.50	0.50	0.
11⁄2			0.50				
2		0.50	0.67		0.50		
21⁄2		0.63	0.83		0.63		
3		0.75	1.00	0.50	0.75		
31⁄2		0.88		0.58	0.88		
4		4 00		0.07	4 00	0.50	

2	0.50	0.67		0.50			
21⁄2	0.63	0.83		0.63			
3	0.75	1.00	0.50	0.75			
31⁄2	0.88		0.58	0.88			
4	1.00		0.67	1.00	0.50		
41⁄2			0.75		0.56		
5			0.83		0.63	0.50	
51⁄2			0.92		0.69	0.55	
6			1.00		0.75	0.60	
6¼					0.78	0.63	0.50
7					0.88	0.70	0.56
8					1.00	0.80	0.64
9						0.90	0.72
10						1.00	0.80
11							0.88
12							0.96
121/2							1.00

1. E = Embedment depth (inches).

2. s_{act} = actual spacing distance at which anchors are installed (inches).

3. s_{cr} = critical spacing distance for 100% load (inches).

4. s_{min} = minimum spacing distance for reduced load (inches).

5. f_s = adjustment factor for allowable load at actual spacing distance.

6. f_{SCT} = adjustment factor for allowable load at critical spacing distance.

- f_{scr} is always = 1.00. f_{smin} = adjustment factor for allowable load at minimum spacing 7. distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

9. %" short drop-in (DIA37S).

10.1/2" short Drop-in (DIA50S)

IBC

21101220

Strong

Drop-In (DIA) Design Information — Concrete

Strong

Allowable Load-Adjustment Factors for Short Drop-in Anchors in Sand-Lightweight Concrete over Metal Deck: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or
- shear load application.
- 3. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.

Edge Distance Tension (f_c)

Edgo	Size	3⁄8	1⁄2
Dist.	C _{cr}	6	8
Cact	C _{min}	31⁄2	43⁄4
(in.)	f _{cmin}	0.65	0.65
31⁄2		0.65	
4		0.72	
41⁄2		0.79	
43⁄4		0.83	0.65
5		0.86	0.68
5½		0.93	0.73
6		1.00	0.78
6½			0.84
7			0.89
71⁄2			0.95
8			1.00

See notes below.

Edge Distance Shear (f_a)

Edao	Size	3⁄8	1⁄2	
Dist.	C _{cr}	7	9%	
Cact	C _{min}	31⁄2	4¾	
(in.)	f _{cmin}	0.45	0.45	
31⁄2		0.45		
4		0.53		
41⁄2		0.61		
43⁄4		0.65	0.45	
5		0.69	0.48	
51⁄2		0.76	0.54	
6		0.84	0.60	
6½		0.92	0.66	
7		1.00	0.72	
71⁄2			0.78	
8			0.84	
81⁄2			0.90	
9			0.96	
93⁄8			1.00	

- 1. cact = actual edge distance at which anchor is installed (inches).
- 2. c_{cr} = critical edge distance for 100% load (inches).
- 3. c_{min} = minimum edge distance for reduced load (inches).
- 4. f_c = adjustment factor for allowable load at actual edge distance.
- 5. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.
- 6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.
- 7. $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

- 4. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

Spacing Tension and Shear (f_s)

	Size	3⁄8	1⁄2
Sect	s _{cr}	8	10%
(in.)	S _{min}	4	5¼
	f _{smin}	0.50	0.50
4		0.50	
4 1⁄2		0.56	
5		0.63	
51⁄4		0.66	0.50
6		0.75	0.57
61⁄2		0.81	0.62
7		0.88	0.66
71⁄2		0.94	0.71
8		1.00	0.76
81⁄2			0.80
9			0.85
91⁄2			0.90
10			0.94
10%			1.00

.50	0.50
.50	
.56	
.63	
.66	0.50
.75	0.57
.81	0.62
.88	0.66
.94	0.71
.00	0.76
	0.80
	0.85
	0.90
	0.94

- 1. sact = actual spacing distance at which anchors are installed (inches).
- 2. s_{cr} = critical spacing distance for 100% load (inches).
- 3. s_{min} = minimum spacing distance for reduced load (inches).
- 4. f_s = adjustment factor for allowable load at actual spacing
- distance. 5. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{SCT} is always = 1.00.
- 6. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 7. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$